Circular construction: building for a greener UK economy Methodology

This analysis calculates the amount of raw, primary materials needed to build the houses, commercial buildings and infrastructure needed in the UK out to 2035 based on predicted household numbers, commercial building demand and infrastructure spending. There are two pathways:

- 1) Business as usual: no improvements in resource efficiency in construction.
- 2) Circular scenario: making better use of existing buildings and reducing demolition rates, as well as reaching the technical potential for resource efficiency by 2035, ie fully implementing measures to reduce the amount of raw material needed per building or project.

Baseline material use in construction

Baseline material use in the UK construction sector in 2018 is taken from M Drewniok, et al (preprint).¹

A summary of material use and upfront carbon emissions associated with each material included in the study is presented in the table below.

Concrete and other cementitious materials, such as plaster and mortar, were responsible for 89 per cent of materials used and 62 per cent of emissions. Metals such as aluminium and steel made up just three per cent of material use but contributed 27 per cent of emissions. Construction of domestic buildings consumed the most materials and emitted most carbon, at 41 and 38 per cent respectively. Non-domestic building construction consumed 20 per cent of the materials, but emitted 30 per cent of the carbon, reflecting the greater proportion of high carbon materials such as concrete and steel used in non-domestic buildings.

Material	Material used		Upfront carbon emissions	
	Million tonnes (Mt)	Per cent of total	Million tonnes (Mt)	Per cent of
				total
Ready mix concrete	54.7	55.5	7.5	29.8
Precast concrete	25.6	26.0	4.8	19.3
Other cementitious	7.1	7.2	3.2	12.6
Clay products	5.8	5.9	1.8	7.3
Steel reinforcement	1.1	1.1	2.4	9.5
Steel sections	1.1	1.1	1.9	7.6
Steel sheets	0.3	0.3	1.3	5.2
Timber	0.7	0.8	0.4	1.7
Natural stone	0.5	0.5	0.05	0.2
Gypsum products	0.9	0.9	0.2	1.0
Glass	0.1	0.1	0.2	0.8
Aluminium	0.08	0.1	1.1	4.4
Plastic (PVC)	0.04	0.04	0.1	0.6
Total	98.6		25.0	

Summary of materials used in UK construction in 2018, according to M Drewniok et al (preprint)

Model building typologies used in M Drewniok et al (preprint)

Sector	Model building typologies	
Domestic	End terrace	
	Mid terrace	
	Semi-detached	
	Detached	
	Bungalow	
	Converted flats	
	Low rise flats, less than four storeys	
	Low rise flats, between four and six storeys High rise flats, between seven and ten storeys	
	High rise flats, over ten storeys	
Non-domestic	Low rise office building	
	High rise office building	
	Small industrial building	
	Medium industrial building	
	Large industrial building	

M Drewniok, et al (preprint) takes a bottom-up approach to estimating material flow in the construction sector, based on ten model building typologies for domestic and five for non-domestic buildings (see above) and representative material intensity for each typology.

Infrastructure was modelled based on a top down approach, due to data limitations, that includes data for concrete, steel and steel reinforcement only.

Business as usual (BAU)

Material demand out to 2035 is projected by scaling up the baseline in line with construction demand for housing, commercial buildings and infrastructure, based on the UKGBC *Whole life carbon net zero roadmap*.² For housing, this is based on Office for National Statistics household projections.³ For commercial buildings and infrastructure, projections include the infrastructure required for net zero, such as in the power system. Power system modelling is based on National Infrastructure Commission analysis of needs for net zero.⁴

Current recycling and reuse rates are used to calculate raw material demand for BAU (see below). Reuse rates are converted into reductions in raw material use by applying reuse rates to the amount of material coming from demolitions in the baseline, to calculate a percentage reduction in demand due to current reuse rates.

Material	Recycled content (per cent)	Reuse rate (per cent)
Concrete	285	0
Steel sections		67
Steel rebar	426	18
Steel sheets		12.59
Timber	0	2.510
Glass	25 ¹¹	0
Aluminium	56 ¹²	0
Plastic	15 ¹³	0

Recycled content and reuse rates assumed for BAU

Circular scenario

This applies interventions from 2025, to give time for government to implement supporting policy, and scales them up linearly to reach technical potential in 2035. Interventions are based on academic literature and expert judgement, and technologies available today. All are applicable to the UK context. Interventions are grouped into five categories: design, demand reduction, reuse, material substitution and modern methods of construction, and recycling (see below).

Interventions modelled

Design	 Reducing overspecification of materials in infrastructure reduces demand by 25 per cent¹⁴ Optimising design of buildings through digital tools reduces demand for materials by 7 per cent¹⁵ Flexible formwork technology to create more complex structures that minimise the use of concrete¹⁶ Optimising reinforcement of concrete¹⁷ Optimising use of structural steel¹⁸ Post-tensioning concrete floor slabs, to reinforce them while requiring less material¹⁹
Demand reduction	 Increasing use of precast concrete elements²⁰ Triple the numbers of homes delivered by converting commercial buildings into flats, reducing demand for other housing types by 24 per cent and demolition of commercial buildings by 57 per cent.²¹
Reuse	 Reusing structural and sheet steel reduces demand by 40 per cent, structural timber by 18 per cent, and bricks by 30 per cent²² Repurposing entire foundations in 5 per cent of new buildings²³ Increasing reuse of stone, glass, aluminium, and plastic by five per cent²⁴
Material substitution and Modern Methods of Construction (MMC)	 Increasing use of timber in structural elements of low and mid-rise buildings reduces demand for steel, cement and bricks.²⁵ MMC increases to 30 per cent of building stock by 2035. Wastage rate is halved for all materials in these buildings.²⁶
Recycling	 Increasing recycled content of steel, aluminium, glass and plastic to 95 per cent²⁷

To account for the potential for demolition rates to be reduced and building lifetimes extended, this pathway delivers more housing through change-of-use from commercial properties to domestic.

The baseline study includes a domestic housing typology called 'converted flats' which represents change of use from commercial to domestic. This typology assumes the structure of the building, including foundation, frame and external walls are retained, but all other elements are replaced. It therefore assumes that internal walls, doors, and windows can all be reconfigured to provide a residential space.

In the circular scenario, the number of homes delivered as 'converted flats' is tripled by 2035, compared to the baseline, and demand for all other housing types is reduced by 24 per cent to maintain overall housing delivery. This reduces the demolition of commercial buildings by 57 per cent.

For infrastructure, spending has been reduced to account for only maintenance of existing roads, with no money spent on new roads. A 51 per cent reduction is applied to road spending projections and material use, based on previous Green Alliance analysis on road spending commitments in the March 2020 spring budget.²⁸

Carbon emissions calculations

The upfront carbon emissions associated with UK construction in the baseline year of 2018 is taken from M Drewniok, et al (preprint).²⁹ For construction, upfront emissions include emissions from extraction and processing of materials (modules A1-3), transport to site (A4) and construction processes (A5). Carbon intensity of materials are given in Table 32 of the supplementary information for M Drewniok, et al (preprint).

The carbon intensity of material production and construction activity is assumed to be constant, to demonstrate the potential for circularity to reduce emissions from construction independent of efforts to decarbonise industrial production of materials such as steel and concrete.

In the circular scenario, upfront carbon emissions are reduced by taking into account the reduced amounts of raw primary material required, and the emissions from secondary materials. To account for reuse, emissions from modules A1-3 (extraction, processing, etc) are removed but transport and construction process emissions (A4 and A5) are retained. To account for recycling, emissions from modules A1-3 are adjusted to reflect the lower carbon intensity of recycling compared to primary extraction (Table 5). Transport and construction process emissions (A4 and A5) are retained.

Material	Carbon emissions reduction due to recycling
Steel	62-90 (average 76) per cent reduction kg CO ₂ e/kg from cradle-to-gate ³⁰
PVC	2 tonnes CO ₂ e reduction per tonne recycled ³¹
Glass	300kg CO ₂ e reduction per tonne of flat glass remelted ³²
Aluminium	80-96.5 (average 88.25) per cent reduction kg CO_2e/kg from cradle-to-gate ³³

Carbon emissions reduction due to recycling

The environmental impacts of common UK construction materials and best practice potential

The table below provides the reasoning behind our assessment of the environmental impacts of construction materials, on page 27 of *Circular construction: building for a greener UK economy*.

The colour grading is as follows:

Large environmental impact	
Medium environmental impact	
Minimal environmental impact	
Lack of clear data	

Concrete ³⁴	Typical performance	Best practice
Carbon	Upfront carbon emissions from concrete production: 133kg CO ₂ e/tonne. ³⁵ The production of clinker used in cement, is energy intensive, needing rotating kilns the length of two football pitches heated to 1,500 degrees. ³⁶ For every tonne of cement produced, it is estimated that 600kg CO ₂ e is released. ³⁷ Whilst the upfront carbon per tonne of final concrete is lower than other materials, the amount used in UK construction results in a carbon footprint twice as large as steel, ten times greater than brick and 50 times greater than timber. ³⁸	 Increasing the proportion of slag in cement can decrease energy consumption and embodied carbon and the industry had a 2020 target to reach 35 per cent (which it missed).³⁹ In addition, the availability of secondary slag and fly ash is declining as coal plants and blast furnaces close.⁴⁰ Decarbonising cement and concrete production is also difficult as 50 to 60 per cent of emissions derive from the chemical decomposition of raw materials which contain carbon.⁴¹ Alternative non-carbon compounds are being piloted, such as calcium silicates which sequester carbon, but these lack robust life cycle assessments that can point to their
Extraction and	For every tonne of clinker produced	impact and viability. ⁴² Quarry waste could be better used
waste	(a key ingredient in cement used for concrete) 1.55 tonnes of raw material are used. ⁴³	as fine aggregate in construction, rather than as backfill. ⁴⁷
	UK mine and quarry waste was 20Mt in 2019, of which aggregates had the largest share, alongside china clay waste. ⁴⁴	In production, waste to landfill is low, at only 0.3kg per tonne of concrete. ⁴⁸
	Waste to landfill from production is low, at only 0.3kg/tonne of concrete. ⁴⁵	Increasing the recycled content of aggregate in concrete is problematic, as strength and workability concerns have resulted

	TT	in the British Standard for Concrete
	However, virgin material use is	limiting recycled content to 20 per
	dominant, as concrete only uses	cent, which can be adjusted slightly
	five per cent recycled aggregates,	depending on the type of recycled
	although cement is currently made	aggregate and the purpose of the
	of 26 per cent industry by-products	final product. ⁴⁹
	(such as slag, fly ash etc). ⁴⁶	
		In Europe, it is expected that
		cement paste will be separated from
		aggregate and sand waste by 2030,
		giving rise to opportunities for
		reuse within concrete production,
		but research is still ongoing. ⁵⁰
Biodiversity and	Mining can impact local	Using more secondary materials in
land impact	ecosystems and the UK sources up	cement (such as slag) can
lanu inipact		
	to a quarter of its sand through	considerably reduce the depletion
	marine dredging, which can	of non-living resources and impact
	degrade sea floor ecosystems and	on land use potential (by 72 and 41
	contribute to coastal erosion. ⁵¹ In	per cent respectively), which will,
	the UK, 39 per cent of aggregate	in turn, create more favourable
	reserves with extraction permits are	conditions for biodiverse
	in areas of protected land. ⁵²	ecosystems. ⁵⁴ However, the
	However, in general, mining for	availability of slag and fly ash is
	non-metallic minerals (such as	declining as coal fired power plants
	sand, gravel and limestone),	and blast furnaces close.55
	accounts for less than two per cent	
	of resource impacts, as considered	
	by the UN, which include impacts	
	related to climate, health, water	
	stress and land use. ⁵³	
Water	Portland cement, used in concrete,	Further water reduction can be
	has a blue water footprint (fresh	achieved through the use of
	surface water or groundwater) of	harvested rainwater and recycled
	680 litres per tonne, excluding	production water, where recent
	water used indirectly through	developments in water reducers
	energy for production. ⁵⁶	(the chemicals added before
	chergy for production.	concrete is poured) allow residues
	Potable water is then used to mix	to be treated and reused. ⁵⁸
	dried cement with aggregates and	to be treated and redsed.
	in 2019, the UK concrete industry	Progress is also needed in
	consumed 78.2 litres of mains water	consistent data monitoring to set a
		baseline for a water reduction
	per tonne of performance concrete. ⁵⁷	
Pollution		target.
FULLUIUI	Quarrying for aggregates, used in	For quarries over 25 hectares,
	concrete, affects the local	pollution to water and air has to be
	environment.	recorded. ⁶¹
	1 2020 · · · · · ·	
	In 2020, aggregate mining in the	While there are industry standards
	UK produced 18,000 tonnes of	for quarrying, there are no clear
	particulate matter – 2,000 tonnes	targets for mitigation and a lack of
	higher than passenger cars for the	data as to whether standards are
	same year –which has health	commonly upheld.

	consequences for the lungs and heart, as well as environmental impacts on nutrient health. ⁵⁹ Quarrying for aggregates was also responsible for 22 tonnes of sodium pollution, which can negatively	
	impact marine ecosystems if leaked into freshwater. ⁶⁰	
End of life	Most concrete recycling is in the form of low grade aggregate, with 75 to 80 per cent of recycled aggregate ending up in sub-base fill. ⁶²	Direct reuse could deliver a primary raw material saving of over 1000kg/m ³ of concrete compared to its recycled equivalent. ⁶⁴ However, there are only limited opportunities
	Some forms of concrete are reusable at the end of life, largely from prefabricated structures and larger concrete blocks, but reuse is difficult and not integrated into the	for concrete reuse, mostly with precast elements and through foundations which can be reused in situ. ⁶⁵ In general, aggregates recycling is now reaching its 'upper
	industry, with rates being even lower than steel. ⁶³	limit', according to the Mineral Products Association, with 70 per cent virgin aggregates still needed to meet the overall demand. ⁶⁶

Steel	Typical performance	Best practice
Carbon	Upfront carbon emissions for steel production for UK construction: 2,084kg CO ₂ e/tonne. ⁶⁷ Steelmaking is energy intensive, accounting for a quarter of global industrial carbon emissions and 15 per cent of UK industrial emissions. ^{68,69}	The manufacturing process can be decarbonised through a combination of electric arc furnaces and hydrogen direct reduction processes, which would reduce the UK's CO ₂ emissions from steel production by 87 per cent by 2035. ⁷⁰ Scrap-electric arc furnace production currently accounts for 21 per cent of the UK's overall steel production, with direct CO ₂ emissions from the furnace coming to 100kg CO ₂ e per tonne of steel, compared to 1,900kg for traditional blast furnaces. ⁷¹
Extraction and waste	For every tonne of virgin steel produced, the industry requires 2.4 tonnes of raw material (iron ore, coal and limestone) and 0.13 tonnes of scrap steel. ⁷² Once in manufacturing, the material efficiency rate for the sector is high – at 97.6 per cent – as waste and by- products, such as slag and ferrous	Reducing waste from mining is heavily dependent on the location and quality of iron ore. Rich iron ores have better material efficiency and deep ores allow for underground mining, producing less waste rock.

	scrap, have broader uses and value	Waste can be managed through
	in industry. ⁷³	treatment to prevent acidic sludge
	in maasty.	and, if not suitable for production,
		used as backfill in mines. ⁷⁴
		used as Dackini in nimes.
		When scrap steel is used in
		production, raw material savings for
		every tonne produced are 1,400kg
		for iron ore, 740kg for coal and
		120kg for limestone. ⁷⁵
		120kg 101 Innestone."
		Using electric arc furnaces also
		reduces the production of slag by-
		products by around 200kg per tonne
		of steel produced compared to blast
		furnaces. ⁷⁶
		Turnaces."
		Whilst recovery rates for slag are
		high, from 80 to 100 per cent, the
		ratio can be improved in many
		regions. ⁷⁷
Biodiversity and	Ecosystem impacts from raw	The Responsible Steel Standard
land impact	material extraction vary but can be	requires sites to take stock of what
tanu impact	considerable.	risk they pose and impact they have
	considerable.	on biodiversity and to implement a
	In 2010, 75 non cont of improved	
	In 2019, 75 per cent of iron ore	plan to manage them. The standard
	extraction occurred in three species-	also expects sites to safeguard areas
	rich and critical biomes, and around	identified as being important for
	1,000Mt iron ore was originated	biodiversity. ⁸⁰
	from within 20km of a protected	
	area boundary. ⁷⁸	Best practice for mining, in general,
		recommends minimising the
	In general, mining for metals within	activity in space and time, eg to
	protected areas has surged,	avoid seasonal migration routes of
	increasing from 225Mt extracted	important species. ⁸¹
	metal ores to 480 Mt from2000 to	
	2019, with iron ore accounting for	However, reporting is still not
Matar	over half of this extraction in 2019. ⁷⁹	consistent or transparent.
Water	The blue water footprint from	Electric arc furnaces (EAFs) use
	processing virgin steel is around	similarly high levels of water to blast
	8,000 litres per tonne. ⁸²	furnaces, but return slightly more to source (94 per cent), but there is a
	Over 90 per cent of water used in UK	lack of independent assessment for
	steel production is returned to	the water footprint of EAFs. ⁸⁵
	source, meaning only a little is lost	the water lootprint of EAPS.
	(mainly to evaporation).	Water pollution, however, can be
	(manny to evaporation).	mitigated by treating water before
	However discharge of cooling water	returning it to source, which is
	However, discharge of cooling water	—
	can significantly raise the	commonplace in the UK.
	temperature of the receiving water	Where mining torrains near the
	body and affect the aquatic	Where mining remains necessary,
	ecosystems if not treated properly. ⁸³	increasing global demand for metals

	Iron ore mining also often takes	and the declining quality of ore
	place in desert environments,	could increase water use. ⁸⁶
	including in Australia, the world's	could mercase water use.
	largest producer of iron ore, where	
	water availability can be	
	problematic. ⁸⁴	
Pollution	Iron mining results in the most	At an EU level, pollution is managed
	tailings of any metal. ⁸⁷ Some tailings dams have failed in recent years. These store hazardous waste from iron ore mining operations and can release toxic sludge, as well as posing environmental risk in use due to contaminants spread through dust and seepage. ^{88,89}	through environmental management systems which require the monitoring of chemicals used and wastewater and waste gas streams produced, with policies and technologies to reduce the consumption and consequent risks of these products. ⁹³ Mining is more difficult to regulate,
	Steel mining can also harm human health through exposure to particulate matter (PM) and other toxins. ⁹⁰ In general, metals were responsible for 39 per cent of global PM health impacts, mostly deriving from iron and steel. ⁹¹	and increased demand for metals combined with declining ore quality, mean that mines will need to use more energy, more water and create more waste, which has knock- on polluting effects. ⁹⁴
	In 2020, UK blast furnace steel production also produced 43,000 tonnes of poisonous carbon monoxide gas. ⁹²	
End of life	As a 'permanent material', steel has the potential for nearly 100 per cent recyclability, and can be converted to the same (or higher or lower) grade product depending on the initial usage and metallurgy. ^{95,96}	Whilst steel recycling rates are very high, there is potential for reuse to be much higher and to deliver significant environmental savings compared to recycling. ⁹⁸ For example, reusing steel could offer a carbon saving of over 2,000 kg
	In the UK, the steel recycling rate is around 95 per cent, but reuse is only five per cent. ⁹⁷	CO ₂ e/tonne of reused product. It is estimated that 40 per cent of UK construction demand could be met by reused steel. ⁹⁹

Timber	Typical performance	Best practice
Carbon	Upfront carbon emissions for timber production: 293kg CO ₂ e/tonne.	Timber can be carbon negative over its whole lifecycle, if forests are managed sustainably. ¹⁰³

		P
	This does not account for its carbon	Energy-consuming drying processes
	storage potential. ¹⁰⁰ Timber can be	have the potential to use 60 per cent
	carbon negative from cradle to gate	less heat, when using best available
	if carbon storage is included, and a	technologies in drying kilns. ¹⁰⁴ (See
	typical three-bedroom semi-	page 28 of our report <i>Circular</i>
	detached timber frame house can	construction: building for a greener
	lock up around four tonnes of	UK economy. There are questions
	atmospheric CO ₂ , with variations	about how much timber can be
	depending on timber species. ¹⁰¹	sustainably sourced, given other
	However, the forestry sector and	pressures on global forestry and
	deforestation contribute up to 17 per	land use.)
	cent of global greenhouse gas	
	emissions. ¹⁰²	
Extraction and	For every metre cubed of tree cut in	New technologies have been
waste	a forest, half goes to waste in the	developed to allow for the use of low
Muste	form of damaged residuals,	quality logs, but these production
	abandoned logs, stumps, branches	methods are not transformative nor
	and trimmings. ¹⁰⁵	are they widely used. ¹⁰⁷
	and trimmings.	
	This waste is often used in	Technological changes can reduce
		Technological changes can reduce
	production (such as for steam	waste, as well, but not to a great
	production boilers for drying wood	extent: waste from plywood
	products), but can be left on site. ¹⁰⁶	production can be reduced by six
		per cent, for instance. ¹⁰⁸
		For some products, the amount of
		secondary content can be increased,
		but virgin timber is often still
		preferred to ensure consistent
		quality: recycled content in wood
		boards can be above 70 per cent in
		one company, but only 40 per cent
		in another. ¹⁰⁹
		The price of recovered wood can be
		high, due to government incentives
		for biomass as fuel, limiting its
		reuse. ¹¹⁰
Biodiversity and	Unlike extraction methods for rocks	Sustainably managed, regenerative
land impact	and ores, timber harvesting requires	forests protect biodiversity and can
and impact	topsoil to remain intact, causing less	improve the condition of native
	disruption to wildlife habitats. ¹¹¹	woodlands. ¹¹⁵
	disruption to whunte natitats.	wooulailuo.
	Globally, there are pressures on	According to the forestry industry,
	sustainable forestry, with	the expansion and maturing of
	estimations suggesting paper and	existing forests for wood production
	timber sourcing combined are	has demonstrably increased levels of
	responsible for 13 per cent of	biodiversity and ecological
	deforestation and suggestions that	restoration. ¹¹⁶ (See page 28 of our
	forestry involving clear cutting or	report Circular construction:
	slashing and burning, which largely	building for a greener UK economy,
	occurs outside Europe, causes a loss	as there are questions about how

	of up to 50 per cent of local	much timber can be sustainably
	species. ^{112,113}	sourced, given other pressures on
		global forestry and land use.)
	The global picture is an important	
	aspect of UK timber demand as most	
	wood for the UK market – 81 per cent	
	– is imported, although this is	
	mostly from FSC-certified EU	
	sources. ¹¹⁴	
Water	Healthy forests filter water, reduce	Sustainably managed forests protect
	erosion and recharge groundwater	water supplies, improve water
	tables, which ensures safe water	security and overall water quality. ¹²⁰
	quality. ¹¹⁷	
	However, if managed unsustainably	
	and deforested, water quality is	
	compromised and there is an	
	increased risk of floods and drought,	
	triggering a host of additional	
	environmental problems. ¹¹⁸	
	In comparison with other materials,	
	timber pollutes water less, with	
	estimations that steel and concrete	
	pollute 300 per cent and 225 per	
	cent more water resources	
	respectively. ¹¹⁹	
Pollution	Forest felling and restocking can	By identifying vulnerable areas,
	increase acidification and the	establishing buffer zones and closely
	likelihood of soil nitrate leaching,	managing the type and longevity of
	but the extent of the impact varies	forest cover and revegetation,
	depending on forest type, rate of	forestry has a marginal impact on
	revegetation and broader pollution	acidification. ^{123,124}
	levels. ¹²¹	
	Diversified second and subsequent	
	rotations have marginal impacts on	
	surface acidity. ¹²²	
End of life	Wood products are often easier to	There is potential for greater reuse
	deconstruct and reuse than	of timber, exemplified by the
	concrete, especially when	National Community Wood
	connections are nailed or screwed. ¹²⁵	Recycling Project who reused 44 per
		cent of wood waste in 2017. ¹²⁹ Reuse
	However, this has not been	will continue to be limited by
	mainstreamed and half of wood	demand for the growing biomass
	waste is burnt as biomass, which	energy sector, though, which is
	releases carbon that would be stored	being encouraged by government
	if material were reused or recycled.	policy. Recycling cross laminated
	Low grade recycling (estimated at 30	timber provides a carbon benefit of
	per cent) is the next most common	364kg CO ₂ e/m ² , though there is
	destination, with only 2.5 per cent	limited research on how to improve its recyclability. ¹³⁰

reused or reprocessed as a higher value product. ¹²⁶	
Cross-laminated timber is difficult to recycle due to the glues used, which could prove problematic as the global market for this is expected to triple by 2030. ¹²⁷	
Around 26 per cent UK wood waste is from construction, which matches the amount of wood waste generated through demolition. ¹²⁸	

Brick	Typical performance	Best practice
Carbon	Upfront carbon emissions for brick production: 213kg CO ₂ e/tonne. ¹³¹ Although the efficiency of manufacturing kilns has generally improved, the process is energy intensive and is still reliant on fossil fuels, with just five per cent of electricity derived from on site renewables. ¹³²	The industry is beginning to investigate the feasibility of replacing natural gas with low carbon fuels such as hydrogen, and electric-firing. ¹³³ There are also improvements which could be made in efficiency, which worsened during the Covid-19 pandemic due to decreased demand. ¹³⁴ With current technology, using reclaimed materials can reduce embodied carbon by 16kg per tonne of recycled content included, which is a reduction of seven per cent. ¹³⁵
Extraction and waste	For every tonne of brick produced, approximately 1.2 tonnes of raw material are needed. ¹³⁶ The volume of waste generated in manufacturing is low, with around 0.5kg sent to landfill per tonne of brick produced. ¹³⁷ However, only six per cent of the materials used in brick production are from alternative, recycled or secondary sources. ¹³⁸ This figure is around half of that reported a decade ago. ¹³⁹	The volume of waste generated in manufacturing is low, with around 0.5kg sent to landfill per tonne of brick produced. ¹⁴⁰ Though they are still in their infancy and have very limited market share, innovations, such as the K-Briq and ECO brick strips in the Netherlands, demonstrate that it is possible to produce bricks with a minimum 90 per cent recycled content, equivalent strength, high thermal mass and at comparable price points to conventional bricks. ^{141,142}
Biodiversity and land impact	As with cement and concrete, mining can impact local ecosystems.	There is no clear reporting on the interim impact on biodiversity of quarrying for bricks.

	Clay mining can contribute towards	Whilst there are 'Nature after
	topsoil erosion and remove the	minerals' parks largely focused on
	natural protection that clay provides	biodiversity restoration once
	in aquifers. ¹⁴³	quarries are closed, this covers only
		80 out of 2,000+ quarries in the UK
	Currently, 88 per cent of UK	and the lead times to these
	production sites are covered by a site	restoration plans and the interim
	specific biodiversity restoration	impacts on biodiversity are
	plan, but the interim impact on local	unclear. ¹⁴⁵
	ecosystems is not clearly reported. ¹⁴⁴	
		Best practice can be attributed to the
		quarries within these parks that
		begin restoration while still active,
		reducing intermediary impacts.
Water	There is a last of transport data	Whilst the use of mains water versus
Walei	There is a lack of transparent data	
	about absolute water consumption	harvested water is being monitored,
	in UK brick manufacturing.	and minimising water use is
		mentioned in the sector's water
	Estimates suggest around 54 to 350	policy, absolute targets for water
	litres of water are needed per tonne	consumption or efficiency have not
	of bricks, depending on the product	yet been established. ^{148,149}
	type (with facing bricks needing the	
	most water and bricks for walls	
	needing the least). ¹⁴⁶	
	In 2019, most water used was derived	
	from rainwater collected from clay	
	quarries, which improves water	
	efficiency per tonne by 14 per cent. ¹⁴⁷	
Pollution	Brick production in the UK was	For quarries over 25 hectares,
	responsible for 1,700 tonnes of PM	pollution to water and air has to be
	pollution in 2020, which can	recorded. ¹⁵² While there are industry
	negatively impact human health and	standards for quarrying, there are no
	the local environment. ¹⁵⁰	clear targets for mitigation and a
	the local chivitolinient.	lack of data as to whether standards
	In 2020, UK brick production	are commonly upheld.
		are commonly upnetu.
	generated around 4,700 tonnes of	
	additional air pollutants such as	
	sulphur dioxide and carbon	
	monoxide, which are dangerous for	
	human health and, in the case of	
	sulphur dioxide, contribute to acid	
	rain. ¹⁵¹	
End of life	Bricks often go to landfill, as high-	The Demolition Protocol suggests
	strength mortars limiting	that the recovery potential for clay
	reclamation. ¹⁵³	bricks could be as high as 100 per
		cent in some buildings, especially
	Approximately 2.5 million bricks are	where lime-based mortar is used,
	released from buildings via	which aids disassembly. ¹⁵⁶ However,
	demolition annually in the UK, with	lime-based mortar was mostly used
	a reuse reclamation rate of less than	in historic buildings: Portland
	five per cent. ¹⁵⁴ For bricks that are	cement has a higher bond strength
L		

recycled, it is often low grade:	and is consequently primarily used
around 50 per cent of bricks are	in modern masonry. ¹⁵⁷ Reclaiming
under hybrid recycling, which	bricks with cement-based mortar is
means they are crushed alongside	much more difficult, but it is
other materials and used in hardcore	technically possible through
and underground fill for pavements	techniques such as saw-cutting and
and roads. ¹⁵⁵	punching, and could become more
	feasible if aspects of the process are
	automated. ¹⁵⁸

Glass	Typical performance	Best practice
Carbon	Upfront carbon emissions for glass production: 1,627kg CO ₂ e/tonne. ¹⁵⁹	Traditional furnaces are about as efficient as technically possible.
	Glass manufacturing is energy intensive, requiring very high furnace temperatures of around 1,600°C for the soda-lime-silica flat glass sheets most commonly used in construction. ¹⁶⁰	Some new technologies are being explored, such as all-electric melting, hybrid furnaces and hydrogen), but these are not yet well established and can be unsuitable for the technical production of flat glass. ¹⁶²
	Typically, over 80 per cent of fuel consumed on UK glass sites is natural gas. ¹⁶¹	A key facet of decarbonising glass production is to increase the use of cullet which refers to recycled glass that can be used in production. A ten per cent increase in the content of cullet reduces energy consumption by approximately three per cent. ¹⁶³
Extraction and waste	For every tonne of flat glass produced, 1.4 tonnes of raw material are used. ¹⁶⁴ Production waste can be recycled internally, as glass offcuts can be reprocessed as 'cullet', ie recycled glass that is used in manufacturing.	Fine aggregate waste generated through sand extraction can also be used in construction, but there are suggestions that ore-based sands, referring to the tailings from mining for ores, can be used to replace the amount of virgin material needed. ¹⁶⁸
	Up to 15 per cent of manufactured glass is collected and used as internal cullet. ¹⁶⁵ Glass lost in downstream fabrication	However, this would be highly dependent on the physical properties and silica content of tailings, and impurities need to be closely monitored.
	requires careful sorting to be remelted, and breakages often make the glass unusable. ¹⁶⁶ As of 2008, the recycled content from external sources (eg end of life waste) was thought to be between 20 and 30 per	Every tonne of cullet remelted into new glass saves 1.2 tonnes of raw materials. ¹⁶⁹ Production of cullet waste can
	cent. ¹⁶⁷	already be entirely recycled internally in the melting furnace.

		There are not many further improvements to be made in material efficiency, as flat glass is already close to its minimum thickness. ¹⁷⁰ There is technical potential to produce flat glass derived entirely from secondary material. This has not yet been extensively tested, though, and there may be quality issues for certain products, as well as problems with the availability of
Diadivarcity and	Lile other new metals mining for	waste input. ¹⁷¹
Biodiversity and land impact	Like other non-metals, mining for silica sand, limestone and soda ash affects local ecosystems, but has a relatively low impact overall. There is, however, uncertainty regarding the long term security of silica sand supply to make clear glass, putting pressure on already fragile ecosystems. ^{172,173}	There is no clear reporting on the interim impact on biodiversity of quarrying for limestone or mining silica sand. Whilst there are 'Nature after minerals' parks focused on biodiversity restoration once quarries are closed, this covers only 80 out of 2000+ quarries in the UK, few of which are silica sand mines, and the lead times to these restoration plans and the interim impacts on biodiversity are unclear. ¹⁷⁴ Best practice can be attributed to the
		quarries within these parks that begin restoration while still active,
		reducing intermediary impacts.
Water	The blue water footprint of glass is around 3,200 litres per tonne of soda-lime float glass, largely deriving from the Solvay process, which produces soda ash. ¹⁷⁵	There are alternative production possibilities for float glass, but the potential water reduction achieved through them has not been quantified. For instance, there have been suggestions that seawater,
	Glass extraction and production also	rather than freshwater, could be
	generates sediments which are critical pollutants when leaked into	used in the Solvay process, which would lower the industry's blue
	water bodies. ¹⁷⁶	water footprint. ¹⁷⁷
	Water usage is not transparently monitored in UK industry.	In addition, alternative dry lime processes require less water than liquid lime, which is conventionally used. ¹⁷⁸
Pollution	The polluting impact of glass	According to the glass industry, a
	production is relatively low,	ten per cent increase in the

	producing 41kg of particulate matter in the UK in 2020 and four tonnes of sodium. ¹⁷⁹	proportion of cullet reduces air pollution from already low levels by 20 per cent and water pollution by 50 per cent. ¹⁸⁰
End of life	Only a third of flat glass is currently recycled, compared to 71 per cent for container glass used in packaging. ¹⁸¹ Industry experts confirmed that direct reuse of flat glass is extremely difficult, due to the presence of invisible fractures in glass that affect performance, as well as tight quality control regulations.	If all the flat glass currently going to landfill was diverted to being recycled, the CO_2 savings would be around 150,000 tonnes (300kg CO_2e/t). ¹⁸² However, the availability of high-quality cullet is currently a limiting factor to circularity in the glass sector, especially as quality requirements for flat glass are more stringent than container glass and there are technical barriers in removing intact windows. ^{183,184} Some studies are looking into delamination processes that would increase the possibility of reuse, but these are often complicated and not considered favourable. ¹⁸⁵

Endnotes

¹ M Drewniok, et al, 2022, Mapping material use and embodied carbon in UK construction

² UK Green Building Council (UKGBC), 2021, *Net zero whole life carbon roadmap: a pathway to net zero for the UK built environment*

³ Household projections were collated across the UK from: Office for National Statistics, 2020, Household projections for England; National Records of Scotland, 2020, Household projections for Scotland; Stats Wales, 2020, Household projections; Northern Ireland Statistics and Research Agency; 2018, Northern Ireland Household Projections.

⁴ National Infrastructure Commission, 2020, Renewables, recovery and reaching net zero

⁵ Mineral Product Association, 2022, *The contribution of recycled and secondary materials to total aggregates supply in Great Britain - 2020 estimates*

⁶ Based on Green Alliance analysis of UK and EU steel statistics.

⁷ British Constructional Steel Association (BCSA), Steel for Life and the Steel Construction Institute (SCI), 'Recycling and reuse', Steelconstruction.info

⁸ Ibid

⁹ Ibid

¹⁰ M Cramer and D Ridley-Ellis, 2020, *A shed resource: a look at wood recycling in the UK*

¹¹ WRAP, 2008, Collection of flat glass for use in flat glass manufacture: a good practice guide

¹² J Norman et al 2021, *Resource efficiency scenarios for the UK: a technical report*. Centre for Research into Energy Demand Solutions (CREDS). Oxford, UK.

¹³ S Corbey, 2018, *What's in my UPVC window?* Alliance for Sustainable Building Products (ASBP)

¹⁴ Experts we consulted were clear that overspecification, ie putting more material in than is required, is commonplace in construction and for infrastructure particularly. Research has demonstrated overspecification can range from 25-50 per cent (https://www.meicon.net/what-we-do). The highest levels of overspecification occur for in-ground aspects of projects, such as concrete foundations, rather than leaner, more technical aspects. To account for this, we have applied a 25 per cent reduction in overspecification across all infrastructure.

¹⁵ J Norman et al 2021, op cit

¹⁶ J Norman et al 2021, op cit and W J Hawkins et al 2016, *Flexible formwork technologies – a state of the art review.*

¹⁷ J Norman et al 2021, op cit and W Shanks et al 2019, *How much cement can we do without? Lessons from cement material flows in the UK*

¹⁸ J Norman et al 2021, op cit

 $^{\rm 19}$ J Norman et al 2021, op cit and W Shanks et al 2019, op cit

²⁰ J Norman et al 2021, op cit and W Shanks et al 2019, op cit

²¹ In the baseline year (based on M Drewniok et al, preprint, op cit) 42,000 homes are delivered as converted flats. These are flats converted from commercial buildings to residential. Ninety four per cent of the floor area of demolitions in 2018 were commercial buildings. To model the impact of extending the lifetime of buildings and reducing demolition rates, we assumed additional housing could be delivered as converted flats. The commercial floor space demolished in 2018 would have supported five times as many converted flats, if no demolition took place. However, not all commercial buildings will be suitable for residential conversion, and some may contain hazardous materials. We therefore tripled the number of homes delivered as converted flats. This reduced the floor area of commercial buildings demolished by 57 per cent. To maintain housing delivery, we reduced all other domestic house building by 24 per cent.

²² Assumptions on the potential for reused steel to meet demand were taken from C F Dunant et al 2017, *Real and perceived barriers to steel reuse across the UK construction value chain* who analyse steel scrap generation and quality to estimate that 40-80 per cent of steel demand could be met through reuse. For timber and bricks assumptions on reuse reducing demand for raw material are taken from modelling assumptions from the CIEMAP academic project, which were used as the basis for Green Alliance, 2018, op cit. Reuse of structural timber reduces demand for timber by 18 per cent, and reuse of bricks reduces demand by 30 per cent.
²³ Reuse of foundations results in no new concrete required for five per cent of projects. J Norman et al 2021, op cit

²⁴ Reuse of other construction materials reduces demand for raw materials by five per cent, based on modelling assumptions from the CIEMAP academic project, which were used as the basis for Green Alliance, 2018, op cit.

²⁵ Modelling assumptions from the Centre for Industrial Energy, Materials and Products (CIEMAP) academic project, which were used as the basis for Green Alliance, 2018, Less in, more out. Assuming change in English house building to typical Scottish mix (i.e. more timber frame and structural insulated panels and less masonry); widespread use of hybrid timber-steel in retail and warehousing. Use of cross-laminated timber and glulam in multi-storey construction for frame and flooring. Maximum technical potential would lead to ~500 per cent increase in wood for ~15 per cent decrease in steel and concrete, ~70 per cent decrease in brick. ²⁶ Projections from Savills (https://www.savills.co.uk/research_articles/229130/301059-0) and McKinsey (https://www.constructioncarbon.com/articles/modular-homes-a-way-for-the-future) suggest 20 per cent of housing could be delivered by MMC by 2030. Experts we consulted for the project suggested this could be up to 50 per cent by 2035 if problems with the planning system and financing models were tackled by government. For this analysis, we have taken 30 per cent of building stock as an ambitious scale up of MMC by 2035, but there is potential for further uptake with the right policy support. One of the benefits of MMC for the environment is that it reduces the amount of material wasted, and therefore the amount of raw material needed to be extracted. Case studies have demonstrated a range of wastage rate reductions, up to 90 per cent in the highest case. To account for overlap with other design interventions which reduce material use, such as increased use of precast concrete over ready mixed, for this analysis we have taken a mid-point estimate that MMC can halve the wastage rates compared to current practice. This is supported by multiple statements from the evidence submitted to the House of Lords Science and Technology Committee enquiry, Off-site manufacture for construction: building for change.

²⁷ J Norman, et al 2021, op cit

²⁸ Green Alliance, 2021, *Getting the building blocks right*

²⁹ M Drewniok, et al, 2022, op cit

³⁰ United Nations Environment Programme, 2019, *Global resources outlook*

³¹ Stichnothe and Azapagic, 2013, Life cycle assessment of recycling PVC window frames

³² British Glass, 2021, Glass sector net zero strategy

³³ United Nations Environment Programme, 2019, op cit

³⁴ Concrete's impact includes the impact of cement in its production, which is often where most of the impacts arise. Cement constitutes ten to 15 per cent of the material in concrete, along with water and aggregates.
³⁵ Weighted average taken from M Drewniok, et al, 2022, *Mapping material use and modelling the embodied*

carbon in UK construction

³⁶ Science Museum, 'Building the modern world: concrete and our environment', www.sciencemuseum.org.uk,

³⁷ P Fennell, et al, 2021, 'Decarbonizing cement production', *Joule*, vol 5, pp 1305-1311

³⁸ M Drewniok, et al, 2022, op cit

³⁹ Mineral Products Association (MPA), 2021, *Concrete industry sustainability performance report*

⁴⁰ BEIS, 2017, Fly ash and blast furnace slag for cement manufacturing

⁴¹ M Drewniok, et al, 2022, op cit

⁴² International Energy Agency, Cement Sustainability Initiative, 2018, *Technology roadmap: low carbon transition in the cement industry*

⁴³ D Manning, et al, 2019, 'Evaluation of raw material extraction, processing, construction and disposal of cement and concrete products: datasets and calculations', *Data in brief*, vol 24, pp 613-621

⁴⁴ L Jones and R Gutierrez, 2023, 'Circular ceramics: mapping UK mineral waste', *Resources, conservation and recycling*, vol 190

⁴⁵ MPA, 2021, op cit

⁴⁶ Ibid

⁴⁷ L Jones and R Gutierrez, 2023, op cit

⁴⁸ MPA, 2021, op cit

⁴⁹ The Concrete Centre, 2018, *Material efficiency*

⁵⁰ European Commission, 2023, JRC technical report: decarbonisation options for the cement industry

⁵¹ WWF, 2021a, Thriving within our planetary means

⁵² British Geological Survey, 2019, *Collation of the 2019 aggregate minerals survey for England and Wales* ⁵³ UNEP, 2019, *Global resources outlook*

⁵⁴ Y Li, et al, 2016, 'Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production', *Journal of Cleaner Production*, vol 120, pp 221-230

⁵⁵ BEIS, 2017, op cit

⁵⁶ P Gerbens-Leenes, et al, 2018, 'The blue and grey water footprint of construction materials: steel, cement and glass', *Water resources and industry*

⁵⁷ MPA, 2021, op cit

⁵⁸ MPA, 2021, op cit

⁵⁹ National Atmospheric Emissions Inventory, 'UK emissions data selector', naei.beis.gov.uk, (last accessed 28 February 2023)

60 Ibid

⁶¹ Environment Agency, 2012, 'Pollution inventory reporting – mining and quarrying guidance note'

⁶² MPA Concrete Centre, 'End of life recycling', www.concretecentre.com

⁶³ P Hopkinson, et al, 2019, 'Recovery and reuse of structural products from end-of-life buildings', *Proceedings of the Institution of Civil Engineers – Engineering Sustainability*, vol 172, pp 119–128

64 Ibid

⁶⁵ CREDS, 2021, Resource efficiency scenarios for the UK: a technical report

⁶⁶ Mineral Products Association, 22 February 2022, 'Aggregates recycling reaching 'upper limit' says MPA'

⁶⁷ Weighted average taken from M Drewniok, et al, 2022, op cit

⁶⁸ UNEP, 2019, op cit

⁶⁹ Green Alliance, 2022, *Building the future: a faster route to clean steel*

70 Ibid

⁷¹ Ibid

⁷² Make UK, 2022, Net zero steel: a vision for the future of UK steel production

⁷³ S Biswal, et al, 2020, 'Waste as resources in steelmaking industry – current trends', *Current opinion in green and sustainable chemistry*, vol 26

⁷⁴ M Tayebi-Khorami, et al, 2019, 'Rethinking mining waste through an integrative approach led by circular economy aspirations', *Minerals*, vol 9

⁷⁵ World Steel, 2021a, Fact sheet: steel and raw materials

⁷⁶ World Steel, 2021b, *Fact sheet: steel industry co-products*

77 Ibid

⁷⁸ S Luckeneder, et al, 2021, 'Surge in global mining threatens vulnerable ecosystems', *Global environmental change*, vol 69. The three most species-rich biomes were tropical and subtropical moist broadleaf forests (TropSubMBF), tropical and subtropical grasslands, savannas and shrublands (TropSubGSS), and xeric shrublands (DesXS).

⁷⁹ Ibid

⁸⁰ Responsible Steel, 2022, *ResponsibleSteel international standard*

⁸¹ UK Parliament Post, 2022, *Mining and the sustainability of metals*

⁸² P Gerbens-Leenes, et al, 2018, op cit

⁸³ World Steel, 'Water management policy paper', worldsteel.org

⁸⁴ S Luckeneder, et al, 2021, op cit

⁸⁵ World Steel, 'Water management policy paper', worldsteel.org

⁸⁶ UK Parliament Post, 2022, op cit

⁸⁷ Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development, 2018, *State of sustainability initiatives review: standards and the extractive economy*

⁸⁸ WWF, 2021b, Packaging unwrapped: exploring the environmental impacts of global material flows relating to the UK's packaging consumption

⁸⁹ M Tayebi-Khorami, et al, 2019, op cit

⁹⁰ UNEP, 2019, op cit

⁹¹ Ibid

⁹² National Atmospheric Emissions Inventory, op cit

⁹³ European Commission, 2022, 'Commission implementing decision (EU) 2022/2110 establishing the best available techniques (BAT) conclusions, under directive 2010/75/EU of the European parliament and of the council on industrial emissions, for the ferrous metals processing industry'

⁹⁴ UK Parliament Post, 2022, op cit

⁹⁵ World Steel, 2021a, op cit

⁹⁶ C Broadbent, 2016, 'Steel's recyclability: demonstrating the benefits of recycling steel to achieve a circular economy', *The international journal of life cycle assessment*, vol 21, pp 1,658-1,665

⁹⁷ Innovate UK, 2016, Supply chain integration for structural steel reuse

⁹⁸ Ibid

⁹⁹ C Dunant, et al., 2017, Real and perceived barriers to steel reuse across the UK construction value chain
 ¹⁰⁰ Weighted average taken from M Drewniok, et al, 2022, op cit

¹⁰¹ Forestry Commission, 2016, Sustainable construction timber: sourcing and specifying local timber

¹⁰² S Adhikari and B Ozarska, 2018, 'Minimising environmental impacts of timber products through the production process "from sawmill to final products"', *Environmental systems research*, vol 7

¹⁰³ Timber Trade Federation, 'Carbon capture and storage', ttf.co.uk

¹⁰⁴ S Adhikari and B Ozarska, 2018, op cit

105 Ibid

106 Ibid

107 Ibid

¹⁰⁸ S Pandey, 2022, 'Wood waste utilisation and associated product development from under-utilised lowquality wood and its prospects in Nepal', *SN Applied sciences*, vol 4

¹⁰⁹ M Cramer, D Ridley-Ellis, 2020, A shed resource: a look at wood recycling in the UK

110 Ibid

¹¹¹ M Ramage, et al, 2017, 'The wood from trees: the use of timber in construction', *Renewable and sustainable energy reviews*, vol 68, pp 333-359

¹¹² Our World in Data, 'Drivers of deforestation', ourworldindata.org)

¹¹³ UNEP, 2019, op cit

¹¹⁴ Forest Research, 'Origins of wood imports', www.forestresearch.gov.uk

¹¹⁵ Confor, 2020, *Biodiversity, forestry and wood*

116 Ibid

¹¹⁷ Global Forest Watch, 'Water', globalforestwatch.org

118 Ibid

¹¹⁹ S Adhikari and B Ozarska, 2018, op cit

¹²⁰ C Duffy, et al, 2020, 'The impact of forestry as a land use on water quality outcomes: an integrated analysis', *Forest policy and economics*, vol 116

¹²¹ Forestry Commission, 2014, Forestry and surface water acidification

122 Ibid

¹²³ Forestry Commission, 2014, op cit

¹²⁴ CREW, 2013, *Reducing pollution from forestry related activities in the Galloway and Eskdalemuir forests: a review of best management practices to reduce diffuse pollution*

¹²⁵ J Khatib, 2016, *Sustainability of construction materials*

126 Ibid

¹²⁷ Polaris Market Research, 'Cross laminated timber market share, size, trends, industry analysis report, by type, by industry, by end use, by region, segment forecast, 2022 – 2030', www.polarismarketresearch.com
 ¹²⁸ M Cramer, D Ridley-Ellis, 2020, op cit

129 Ibid

¹³⁰ A Younis and A Dodoo, 2022, 'Cross-laminated timber for building construction: a life cycle assessment overview', *Journal of building engineering*, vol 52

¹³¹ M Drewniok, et al, 2022, op cit

¹³² Brick Development Association (BDA), 2021, Sustainability report 2021

133 Ibid

134 Ibid

135 Ibid

¹³⁶ A Miatto, et al, 2021, 'Tracking the material cycle of Italian bricks with the aid of building information modelling, *Journal of industrial ecology*, vol 26, pp 609-626

¹³⁷ BDA, 2021, op cit

138 Ibid

¹³⁹ L Jones and R Gutierrez, 2023, op cit

¹⁴⁰ BDA, 2021, op cit

¹⁴¹ Kenoteq, 'K-Briq', kenoteq.com, (last accessed 28 February 2023)

¹⁴² Vandersanden, 'The end of the brick age? Energy transition in the brick sector', <u>www.vandersanden.com</u>

¹⁴³ P Anju and D Jaya, 2022, 'Impacts of clay mining activities on aquatic ecosystems: a critical review',

International journal of engineering and advanced technology, vol 11, pp 128-134

¹⁴⁴ BDA, 2021, op cit

¹⁴⁵ Nature After Minerals, 'Nature After Minerals', afterminerals.com

¹⁴⁶ A Miatto, et al, 2021, op cit

¹⁴⁷ BDA, 2021, op cit

¹⁴⁸ Brick Development Association (BDA), 2017, *Water policy 2017*

¹⁴⁹ BDA, 2021, op cit

¹⁵⁰ National Atmospheric Emissions Inventory, op cit

151 Ibid

¹⁵² Environment Agency, 2012, op cit

¹⁵³ J Khatib, 2016, op cit

¹⁵⁴ P Hopkinson, et al, 2019, op cit

155 Ibid

156 Ibid

157 Ibid

¹⁵⁸ K Zhao, et al, 2020, 'Developing advanced techniques to reclaim existing end of life service (EoLS) bricks – an assessment of reuse technical viability', *Developments in the built environment*, vol 2

¹⁵⁹ M Drewniok, et al, 2022, op cit

¹⁶⁰ J Khatib, 2016, op cit

¹⁶¹ British Glass, 2021, *Glass sector net zero strategy 2050*

162 Ibid

163 Ibid

¹⁶⁴ C Westbroek, et al, 2021, 'Global material flow analysis of glass: from raw materials to end of life', *Journal of industrial ecology*, vol 25, pp 333-343

¹⁶⁵ R Hartwell, et al, 2022, *Mapping the flat glass value chain: a material flow analysis and energy balance of* UK production ¹⁶⁶ C Westbroek, et al, 2021, op cit ¹⁶⁷ WRAP, Environment Agency, 2008, Collection of flat glass for use in flat glass manufacture ¹⁶⁸ D Franks, et al, 2022, Ore sand: a potential new solution to the mine tailings and global sand sustainability crises ¹⁶⁹ British Glass, 2021, op cit ¹⁷⁰ Ibid ¹⁷¹ Saint-Gobain, 16 May 2022, 'Saint-Gobain achieves the first zero-carbon production of flat glass in the world' ¹⁷² WWF, 2021b, op cit ¹⁷³ ARUP, 2018, Rethinking the lifecycle of architectural glass 174 Ibid ¹⁷⁵ P Gerbens-Leenes, et al, 2018, op cit 176 Ibid 177 Ibid 178 Ibid ¹⁷⁹ National Atmospheric Emissions Inventory, op cit ¹⁸⁰ British Glass, 2021, op cit 181 Ibid 182 Ibid ¹⁸³ R Hartwell, et al, 2022, op cit ¹⁸⁴ C Westbroek, et al, 2021, op cit

¹⁸⁵ R Hartwell and M Overend, 2020, 'Effects of humidity and the presence of moisture at the bond line on the interfacial separation of laminated glass for flat glass reuse', *Challenging glass*, vol 7